Suppression of non-radiative surface recombination by N incorporation in GaAs/GaNAs core/shell nanowires
نویسندگان
چکیده
III-V semiconductor nanowires (NWs) such as GaAs NWs form an interesting artificial materials system promising for applications in advanced optoelectronic and photonic devices, thanks to the advantages offered by the 1D architecture and the possibility to combine it with the main-stream silicon technology. Alloying of GaAs with nitrogen can further enhance performance and extend device functionality via band-structure and lattice engineering. However, due to a large surface-to-volume ratio, III-V NWs suffer from severe non-radiative carrier recombination at/near NWs surfaces that significantly degrades optical quality. Here we show that increasing nitrogen composition in novel GaAs/GaNAs core/shell NWs can strongly suppress the detrimental surface recombination. This conclusion is based on our experimental finding that lifetimes of photo-generated free excitons and free carriers increase with increasing N composition, as revealed from our time-resolved photoluminescence (PL) studies. This is accompanied by a sizable enhancement in the PL intensity of the GaAs/GaNAs core/shell NWs at room temperature. The observed N-induced suppression of the surface recombination is concluded to be a result of an N-induced modification of the surface states that are responsible for the nonradiative recombination. Our results, therefore, demonstrate the great potential of incorporating GaNAs in III-V NWs to achieve efficient nano-scale light emitters.
منابع مشابه
Origin of radiative recombination and manifestations of localization effects in GaAs/GaNAs core/shell nanowires
متن کامل
Strongly polarized quantum-dot-like light emitters embedded in GaAs/GaNAs core/shell nanowires.
Recent developments in fabrication techniques and extensive investigations of the physical properties of III-V semiconductor nanowires (NWs), such as GaAs NWs, have demonstrated their potential for a multitude of advanced electronic and photonics applications. Alloying of GaAs with nitrogen can further enhance the performance and extend the device functionality via intentional defects and heter...
متن کاملDynamics of Optically-Generated Carriers in Si (100) and Si (111) Substrate-Grown GaAs/AlGaAs Core-Shell Nanowires
GaAs/Al0.1Ga0.9As core-shell nanowires (CSNWs), with average lateral size of 125 nm, were grown on gold nanoparticle-activated Si (100) and Si (111) substrates via molecular beam epitaxy. Room temperature-photoluminescence (RT-PL) from the samples showed bulk-like GaAs and Al0.1Ga0.9As bandgap emission peaks at 1.43 and 1.56 eV, respectively. Higher PL emission intensity of the sample on Si (11...
متن کاملOptical properties of GaP/GaNP core/shell nanowires: a temperature-dependent study
Recombination processes in GaP/GaNP core/shell nanowires (NWs) grown on Si are studied by employing temperature-dependent continuous wave and time-resolved photoluminescence (PL) spectroscopies. The NWs exhibit bright PL emissions due to radiative carrier recombination in the GaNP shell. Though the radiative efficiency of the NWs is found to decrease with increasing temperature, the PL emission...
متن کاملInfluence of metal deposition on exciton-surface plasmon polariton coupling in GaAs/AlAs/GaAs core-shell nanowires studied with time-resolved cathodoluminescence.
The coupling of excitons to surface plasmon polaritons (SPPs) in Au- and Al-coated GaAs/AlAs/GaAs core-shell nanowires, possessing diameters of ~100 nm, was probed using time-resolved cathodoluminescence (CL). Excitons were generated in the metal coated nanowires by injecting a pulsed high-energy electron beam through the thin metal films. The Purcell enhancement factor (FP) was obtained by dir...
متن کامل